Estimates for Derivatives of the Green Functions on Homogeneous Manifolds of Negative Curvature

نویسنده

  • R. URBAN
چکیده

We consider the Green functions G for second-order coercive differential operators on homogeneous manifolds of negative curvature, being a semi-direct product of a nilpotent Lie group N and A = R+. Estimates for derivatives of the Green functions G with respect to the N and A-variables are obtained. This paper completes a previous work of the author (see [12, 13]) where estimates for derivatives of the Green functions for the noncoercive operators has been obtained. Here we show how to use the previous methods and results from [12] in order to get analogous estimates for coercive operators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates for Derivatives of the Green Functions for the Noncoercive Differential Operators on Homogeneous Manifolds of Negative Curvature

In this paper we study the Green function for a second order noncoercive differential operator L on a connected, simply connected homogeneous manifold of negative curvature. Such a manifold is a solvable Lie group S = NA, a semi-direct product of a nilpotent Lie group N and an abelian group A = R. Moreover, for an H belonging to the Lie algebra a of A, the real parts of the eigenvalues of Adexp...

متن کامل

Estimates for Derivatives of the Poisson Kernels on Homogeneous Manifolds of Negative Curvature

We obtain estimates for derivatives of the Poisson kernels for the second order differential operators on homogeneous manifolds of negative curvature both in the coercive and noncoercive case.

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

Curvature Estimates for Weingarten Hypersurfaces in Riemannian Manifolds

We prove curvature estimates for general curvature functions. As an application we show the existence of closed, strictly convex hypersurfaces with prescribed curvature F , where the defining cone of F is Γ+. F is only assumed to be monotone, symmetric, homogeneous of degree 1, concave and of class C, m ≥ 4.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004